Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Non-line-of-sight (NLOS) detection and ranging aim to identify hidden objects by sensing indirect light reflections. Although numerous computational methods have been proposed for NLOS detection and imaging, the post-signal processing required by peripheral circuits remains complex. One possible solution for simplifying NLOS detection and ranging involves the use of neuromorphic devices, such as memristors, which have intrinsic resistive-switching capabilities and can store spatiotemporal information. In this study, we employed the memristive spike-timing-dependent plasticity learning rule to program the time-of-flight (ToF) depth information directly into a memristor medium. By coupling the transmitted signal from the source with the photocurrent from the target object into a single memristor unit, we were able to induce a tunable programming pulse based on the time interval between the two signals that were superimposed. Here, this neuromorphic ToF principle is employed to detect and range NLOS objects without requiring complex peripheral circuitry to process raw signals. We experimentally demonstrated the effectiveness of the neuromorphic ToF principle by integrating a HfO2 memristor and an avalanche photodiode to detect NLOS objects in multiple directions. This technology has potential applications in various fields, such as automotive navigation, machine learning, and biomedical engineering.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
null (Ed.)Long-lived photon-stimulated conductance changes in solid-state materials can enable optical memory and brain-inspired neuromorphic information processing. It remains challenging to realize optical switching with low-energy consumption, and new mechanisms and design principles giving rise to persistent photoconductivity (PPC) can help overcome an important technological hurdle. Here, we demonstrate versatile heterojunctions between metal-halide perovskite nanocrystals and semiconducting single-walled carbon nanotubes that enable room-temperature, long-lived (thousands of seconds), writable, and erasable PPC. Optical switching and basic neuromorphic functions can be stimulated at low operating voltages with femto- to pico-joule energies per spiking event, and detailed analysis demonstrates that PPC in this nanoscale interface arises from field-assisted control of ion migration within the nanocrystal array. Contactless optical measurements also suggest these systems as potential candidates for photonic synapses that are stimulated and read in the optical domain. The tunability of PPC shown here holds promise for neuromorphic computing and other technologies that use optical memory.more » « less
An official website of the United States government
